

1

2

Interpolating quadratics

- The secant method interpolates two points
- How about finding an interpolating polynomial between three points?

3

Interpolating quadratics

- First, rearrange the most recent three approximations so that

$$
f\left(x_{k}\right)<f\left(x_{k-1}\right)<f\left(x_{k-2}\right) \text { or } f\left(x_{k}\right)>f\left(x_{k-1}\right)>f\left(x_{k-2}\right)
$$

so that $\left|f\left(x_{k}\right)\right|<\left|f\left(x_{k-2}\right)\right|$

- In this case, we should have

$$
x_{k}<x_{k-1}<x_{k-2} \text { or } x_{k}>x_{k-1}>x_{k-2}
$$

- If this is not the case, we should revert to the secant method

Removing bracketing

- Recall there are two formulas for calculating the root of a quadratic polynomial $a x^{2}+b x+c$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \frac{-2 c}{b \pm \sqrt{b^{2}-4 a c}}
$$

- The first is better at finding the larger root in absolute value
- The second is better at finding the smaller root in absolute value

5

Removing bracketing

- We could find the interpolating quadratic, but this leads to an unwieldy formula:

$$
\begin{aligned}
& \frac{\left(f\left(x_{k-2}\right)-f\left(x_{k-1}\right)\right) x_{k}+\left(f\left(x_{k}\right)-f\left(x_{k-2}\right)\right) x_{k-1}-\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right) x_{k-2}}{\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k-2}\right)\left(x_{k-1}-x_{k-2}\right)} x^{2} \\
& +\frac{\left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right) x_{k}^{2}+\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right) x_{k-1}^{2}+x_{k-2}^{2}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)}{\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k-2}\right)\left(x_{k-1}-x_{k-2}\right)} x \\
& \quad+\frac{\left(f\left(x_{k-2}\right) x_{k-1}-f\left(x_{k-1}\right) x_{k-2}\right) x_{k}^{2}+\left(f\left(x_{k-1}\right) x_{k-2}^{2}-f\left(x_{k-2}\right) x_{k-1}^{2}\right) x_{k}+f\left(x_{k}\right) x_{k-1} x_{k-2}\left(x_{k-1}-x_{k-2}\right)}{\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k-2}\right)\left(x_{k-1}-x_{k-2}\right)}
\end{aligned}
$$

- Also, which root do we pick: there are two

Removing bracketing

- For example,

7

Removing bracketing

- Strategy: Shift the x-values to the origin by x_{k} :
-

Removing bracketing

- Now we get a slightly simpler formula:

```
(f(\mp@subsup{x}{k-1}{})-f(\mp@subsup{x}{k-2}{}))\mp@subsup{x}{k}{}+(f(\mp@subsup{x}{k-2}{})-f(\mp@subsup{x}{k}{}))\mp@subsup{x}{k-1}{}+(f(\mp@subsup{x}{k}{})-f(\mp@subsup{x}{k-1}{}))\mp@subsup{x}{k-2}{}
    +
    +f(\mp@subsup{x}{k}{})
```

- Also, we now must find the smaller of the two roots
- Use $\frac{-2 c}{b \pm \sqrt{b^{2}-4 a c}}$ and choose the sign in the denominator to make the denominator as large as possible

9

Issues

- Unlike the secant and Newton's method:
- If the function is real-valued and the points are real, the root could be complex
- This is useful if the polynomial has complex roots
- This is less useful if you are trying to find a real root

Summary

- Following this topic, you now
- Understand Muller's method
- It uses quadratic interpolating polynomials
- Are aware that techniques can be used to reduce error
- Shifting to the origin
- Understand it may also diverge or result in complex roots, even if all values are real
- Know that Muller's method is $\mathrm{O}\left(h^{\mu}\right)$, which converges almost as quickly as Newton's method

15

